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RESPONSE FOR:
A GEOMETRIC FORMULATION OF THE LAW OF ABOAV–WEAIRE

IN TWO AND THREE DIMENSIONS

J. K. MASON, R. EHRENBORG AND E. A. LAZAR

1. Referee One

We would like to begin by expressing our sincere gratitude to this referee for carefully
reading the manuscript and for providing numerous recommendations that have, in our
opinion, significantly strengthened the paper. We have attempted to carefully implement all
of this referee’s suggestions, and would certainly welcome any further comments.

(1) This is certainly a valuable recommendation of the referee, namely, to clarify our
explanation of the average excess curvature. The brief sentence quoted by the ref-
eree in this comment is changed in the current manuscript to read “Notice that by
Lemma 1, the quantity on the left is the expectation value of the sum of the integrals
of the curvature over the boundaries of the n+ 1 grains in any given Si. Meanwhile,
by the same lemma, the expression 2π · (n+1)− π/3 · �n� · (n+1) is the expectation
value of the sum of the integrals of the curvature over the boundaries of n+1 grains,
chosen independently and randomly from the entire population in Ω. This means
that �n is the difference of the expectation values of the integrated curvature over
the boundaries of two populations of grains, one given by a cluster around a central
grain with n neighbors, and the other by the same number of grains chosen randomly
from the cell complex.” While this does not differ from the referee’s interpretation
of the original text, we hope that this will be much less ambiguous.

(2) The referee is absolutely correct that certain values of the ck would result in the ex-
pansion being finite for all large positive values of k, and has our sincere gratitude for
pointing this out to us. While reflecting further on this issue, we realized that there is
no need to work with a Laurent series after all. Since our concern is with the expan-
sion of a function over the reals, a Taylor series would do perfectly well. The possible
singularity at n = 0 is avoided by performing the expansion around some other point,
e.g. the average value of n. This is reflected in numerous changes in our development
from equation 36 to equation 39 of the present manuscript. Of particular note is
that the mathematical difficulty pointed out by the referee is removed, the general
expression for gn in equation 38 is simplified, the suggested practical expression for
gn in equation 39 is slightly more complicated, and figures 4-7 are completely redone.
The text in this portion of the manuscript has been modified as well to accommodate
these changes.

(3) We thank the referee for pointing out this typo, and have corrected the final sentence
of the conclusion.

1



2 J. K. MASON, R. EHRENBORG AND E. A. LAZAR

(4) We apologize for this omission. As far as we can recall, the supplementary material
was submitted along with the article, though apparently not included in automati-
cally generated manuscript. We will try to communicate with the editors to ensure
that this material is included with the manuscript in the future.

(5) The article in question has been accepted for publication since the original submis-
sion of this manuscript, and we are glad to include the complete citation information.
Meanwhile, the sentence “...two- and three-dimensional versions of a simulated mi-
crostructure evolved into the steady-state regime by the algorithms of Lazar [1, 2]”
in the second paragraph of section 5 has been expanded to read “Our simulations
of normal grain-growth move a discretized grain boundary in accordance with local
versions of the von Neumann–Mullins relation [3, 4] and the MacPherson–Srolovitz
relation [5] in two and three dimensions, respectively. At the point that the statisti-
cal features of the microstructure no longer measurably change with continued grain
coarsening, the cell complex is regarded as being in the steady-state. Further details
of the implementation of this algorithm are provided by Lazar [1, 2].” We would
be perfectly willing to provide more information, should the referee feel that to be
warranted.

(6) As requested by the referee, the values of the ck used in the plots in figures 4-7 are
now included in the captions below the figures, with the number of significant digits
reported indicating the uncertainties in the parameter values. We have also included
the value of µ2, the second central moment of the distribution of the number of sides,
in the caption since this is necessary to reproduce the figures.

2. Referee Two

We would like to thank this referee for his comments, and welcome the opportunity that
this affords to discuss the intent and reach of this paper in more detail.

(1) We absolutely agree with the referee that one of the central difficulties with research
into the Law of Aboav–Weaire is identifying the relation that is being investigated, if
not with the claim that this places our paper on quicksand. From our review of the
available literature, the prevailing understanding is that the Law of Aboav–Weaire
comprises roughly three distinct statements:
(a) For many two-dimensional cell complexes, grains with a small number of sides

tend to be surrounded by grains with a large number of sides, and vice versa.
This statement is given in the first sentence of our introduction, and appears to
be generally agreed upon in all available literature on the subject.

(b) For many two-dimensional cell complexes, the average number of sides of a grain
neighboring a grain with n sides is reasonably well described by 5 + (6 + µ2)/n.
This statement is given in the second sentence of our introduction. While the
expression given by Weaire generally performs well, many researchers have pro-
posed other expressions in attempts to reduce the observed error, though they
are for the most part similar to Weaire’s expression.
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(c) The cell complexes that follow the Law of Aboav–Weaire is the set of natural cell
complexes. This part of the usual understanding of the Law of Aboav–Weaire is
given in the third paragraph of the introduction.

Statements (a) and (b) are essentially empirical in nature. We provide several refer-
ences from a much larger body of supporting literature in the final sentence of the
first paragraph of the introduction. Our intention with giving these as the first and
second sentences of the introduction was to make them absolutely clear to the reader,
though we would be open to suggestions for other means to present them. Meanwhile,
the third statement is not nearly as well-founded as the other two. The central diffi-
culty is with defining the features that make a cell complex natural, apart from the
usual meaning of naturally occurring. Indeed, the referee seems to be in agreement
with us on this point, per the referee’s second comment and our fifth paragraph of
the introduction.

With regard to the specifics of the referee’s first comment, the Law of Aboav–
Weaire does seem to be simple to state. However, this does not occur in the literature
as a single precise mathematical expression, but rather as the collection of observa-
tions and suppositions given above. The introduction to our paper does seem to be
the correct place to outline the prevailing understanding of the Law of Aboav–Weaire,
with all of the accompanying ambiguities and exceptions. We do not feel that we
may be held accountable for this historical state of affairs merely because we explain
the situation though. Rather, the sentiment of the referee seems to be in line with
our own, that there is a need to formulate a precise mathematical statement that
roughly encompasses the statements given above. This is exactly the subject of our
paper, though arriving at the resulting statements requires considerable development
and would likely only become clear to the reader who proceeded as far as section 4
or section 5 in our original document. As an emphasis that this is our intention, our
central result is now presented as the second unlabeled equation in the introduction.

(2) The answer to the referee’s question is that nearly all researchers and papers on the
subject regard the expressions proposed by Weaire [6] or Aboav [7] as the mathe-
matical content of the Law of Aboav–Weaire, as the name suggests. Our equation
38, the same as the second unlabeled equation in the introduction, simplifies to these
expressions for certain conditions, as is mentioned in the fifth paragraph of the intro-
duction and in the text following equation 38. The difference is that our derivation
of equation 38 does not rely on empirical observations or heuristic arguments, but
rather on purely geometric considerations. However, the referee’s principle concern
with this comment seems to be that in the absence of a specific cell complex, the
function gn cannot be given in closed form. This is certainly the case, though we
point out that our equation 38 is not restricted to any particular cell complex and is
not a closed form expression.

(3) Our assertion that we “place [the Law of Aboav–Weaire] on a more solid foundation”
occurs in the abstract, where the following sentence describes more specifically the
meaning of our statement. That is, “we derive exact local forms of the Law of Aboav–
Weaire, and an exact global form that is identical in two and three dimensions except
for a single parameter ζ”. We regret that there is limited space in the abstract
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to expand more on the details presented in the paper, and hope that the referee
understands that the space required to adequately elaborate on the specifics must be
relegated to the body of the manuscript.

(4) The referee is of course correct that the Law of Aboav–Weaire is known to not hold
for a Poisson–Voronoi structure. Our manuscript already includes several references
that make this point in the second sentence of the fifth paragraph of the introduc-
tion. The usual explanation for this departure from the Law of Aboav–Weaire is
that the Poisson–Vornoi structure is not natural, that is, does not frequently occur
in nature where processes including the minimization of boundary energy influence
the statistics of the cell complex. We would like to point out to the referee that our
development does apply to the Poisson–Voronoi structure though, as figure 6 indi-
cates. Indeed, the variations in the coefficients of equation 38 that occur in section
5 provide the possibility of identifying what makes a structure natural or otherwise,
and should with further development make clear the class of models to which the Law
of Aboav–Weaire applies. This relates directly to the final sentence of this comment
of the referee, for which we are grateful as a suggestion for further research.

The referee will find, on a more thorough review of our manuscript, that there is
no mention of a mean-field type approximation anywhere in our document. We do
not know how to make our intention in this regard any more clear than by explicitly
stating in the introduction that we do not make a mean-field approximation of this
kind, though such a statement would seem out of place outside the context of the
current discussion.

(5) We apologize for the apparent confusion surrounding the final paragraph of the in-
troduction. Please allow us to clarify our statement that a ‘cell complex’ should
be regarded as a regular CW complex. While the complete definition of a regular
CW complex is considerably more involved, the explanation below should suffice.
Let an n-dimensional cell be a topological space that is homeomorphic to a closed
n-ball. A CW complex may be constructed inductively from sets of these cells, where
the n-skeleton of the CW complex is the union of the cells with dimension at most
n. The process begins with the 0-skeleton, or a set of points in the ambient space.
The 1-skeleton is constructed from the set of 1-cells and the 0-skeleton by gluing
the endpoints of the 1-cells to the 0-skeleton. Generally speaking, the n-skeleton is
constructed by attaching the set of n-cells to the (n− 1)-skeleton by a quotient map
from the boundary of the n-cells to the (n− 1)-skeleton. The CW complex is regular
if all of the attaching maps are homeomorphisms.

Our feeling, and we hope that of the referee as well, is that including this definition
of the objects being studied would not serve the general reader any better than
the more intuitive explanations already provided in the first paragraph of section 2
and the second paragraph of section 3. On the other hand, the definition of these
topological objects is actually quite precise. Our intention in the final paragraph of
the introduction was to strike a balance between the general reader and the reader
desiring more mathematical rigor and precision, as is apparently the case with the
referee.
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Upon further reflection, the reader who does not know the definition of a regular
CW complex but who nevertheless is knowledgeable of mathematics may find the
phrase “mathematically inclined reader” to be offensive. For this reason, we have
changed the phrase to “readers with an understanding of topology” in an effort to
avoid this situation.

The central concern that the referee expresses in this comment may not apply to the
paper though. Defining a class of cell complexes with an associated weight function
would absolutely be the way to proceed if the intention was to give a closed form
expression for the expectation value of gn. There is some precedent for this in the
literature, as the referee will observe in the third paragraph of the introduction. Our
purpose, on the other hand, is to derive an expression for gn that is not closed form
but applies to any cell complex satisfying the topological requirements of a regular
CW complex. That this is our intention is openly described in the fifth paragraph
of the introduction. One advantage of this more general approach is the ability to
identify quantities, like the average excess curvature, that may be used to construct
specific classes of cell complexes of the type the referee describes. For this reason,
we regard this comment of the referee as an insightful suggestion for the direction of
future research in this area, and regret that the investigation of this issue is outside
the confines of our paper.
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Abstract. The Law of Aboav–Weaire relates the number of sides of a grain to
the average number of sides of the neighboring grains and is usually given as an
empirical observation and restricted to two-dimensional systems. Certain attempts
have been made to make this statement rigorous, or to extend the observation to three
dimensions. This paper places the rule on a more solid foundation in two and three
dimensions using geometric arguments. Specifically, we derive exact local forms of the
Law of Aboav–Weaire, and an exact global form that is identical in two and three
dimensions except for a single parameter ζ. The derivation requires the definition
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quantity. An approximation to our exact result is compared to the results of extensive
simulations in two and three dimensions, and we provide a compact expression that
strikes a balance between complexity and accuracy.
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1. Introduction

Several decades ago, while studying sections of polycrystalline MgO Aboav observed

that grains with a small number of sides tended to be surrounded by grains with a large

number of sides, and vice versa [1]. While this observation was initially suggested as

evidence for a spatial ordering of the grains, a few years afterward Weaire [2] reasoned

on the basis of Euler’s Theorem that the average number of sides of the neighbors of an

n-sided grain should be roughly

gn ≈ 5 +
6 + µ2

n
,

where µ2 is the variance of the distribution of the number of sides of a grain. Since

this prediction is fundamentally empirical, many researchers have proposed slight
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modifications to the above relation [3, 4, 5, 6, 7] as measurements have been repeated and

improved. Nevertheless, the clarity of Weaire’s argument and the remarkable robustness

of this relationship for a variety of two-dimensional systems [3, 8, 9, 10, 11] has elevated

something similar to the above expression to the status of a law.

While the Law of Aboav–Weaire is simple to state, a theoretical justification for

this relation has proven more elusive. Prior approaches have employed geometric or

combinatorial methods [2, 12, 13, 14], microreversibility of topological transformations

[8, 12, 15], the statistical mechanics formalism [6, 16], or application of the Palm method

[5]. While all of these contribute to our understanding of the source of the Law of

Aboav–Weaire, none of them is completely satisfactory. The explanations based on

geometric or combinatorial methods require either that the correlations in turning angles

decay exceedingly quickly [2, 13] or that µ2 be vanishingly small [12, 14], though there

seems to be no physical basis for these assumptions. The realization that edge flips

may occur more frequently on the boundary of grains with many sides [16] refutes

the justifications based on the microreversibility of topological transformations, and

Chiu [17] calls into question the assertion that the maximum entropy method from

statistical mechanics is sufficient to derive the above relation. Finally, we must mention

that several exact relations that reduce to the Law of Aboav–Weaire do appear in the

literature [5, 12]. However, these themselves depend on functions of an unknown form

and without a natural geometric interpretation, and which in practice must either be

neglected completely or measured empirically.

Part of the difficulty with justifying the Law of Aboav–Weaire is precisely the

assertion that this relation holds, to a good approximation, for all natural cell complexes.

Several authors have been able to derive exact expressions that are similar to the

above relation by restricting themselves to specific systems or classes of systems. For

instance, this is the case for two-dimensional systems where the only allowed topological

transformation is an edge flip [18] and for two-dimensional laminated networks [19]. We

should mention that there is an asymptotic expression for large n that applies to a

Voronoi tessellation of points sampled from a Poisson distribution [7] as well, though

this only applies to n outside the practically measurable range.

Since most physically occurring microstructures and cell complexes are three-

dimensional, there is significant interest in formulating a relation comparable to the

Law of Aboav–Weaire for these systems as well. This is considerably more difficult in

three dimensions though, due to the relative scarcity of empirical results and to the

increased complexity of the cell complexes involved. Fortes obtained an expression for

the expected number of faces of a grain neighboring a grain with f faces [20], and while

his result applies only to the staggered stacking of prisms, he suggests that something of

the same form is the natural analogue to the Law of Aboav–Weaire. Other arguments

for a relation of the form proposed by Fortes appear in the literature [14], and some

evidence that this may hold more generally is offered by simulations of a variety of three-

dimensional systems [21, 22, 23, 24]. We mention that the result of Chiu [5] implies the

suggestion of Fortes, though as before this comes at the price of defining a subsidiary
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function of unknown form and obscure geometric meaning.

Our purpose in this paper is not to ‘prove’ the Law of Aboav–Weaire in two

and three dimensions for arbitrary cell complexes. Indeed, this should be regarded

as a fruitless endeavor, since the above relation is known to not hold for certain

cell complexes, including the Voronoi tessellation of points sampled from a Poisson

distribution [4, 25]. Rather, our intention is to provide a geometric derivation of an

exact relation that separates into a part that is required for any cell complex and a part

that depends on the characteristics of the particular cell complex being considered. We

identify this second component as the ‘average excess curvature’, defined in Section 4.

Furthermore, expanding the average excess curvature as a function of n is found to

give several of the proposed forms of the Law of Aboav–Weaire found in the literature.

Specifically, we find that

gn = �n� − a+
�n� · a+ µ2

n
− 1

n
· 1
ζ
·

∞�

k=2

ck ·
�
(n− �n�)k − µk

�

where �n� is the average number of sides of a grain, µk is the kth central moment of the

distribution of the number of sides, ζ is an angle that depends on the dimension, and

a and ck are constants that depend on the cell complex. We compare this expansion

with the results from extensive simulations in two and three dimensions, and find an

expression for the average excess curvature that strikes a balance between complexity

and accuracy. In this process numerous other results are obtained as well, including

several exact local forms of the Law of Aboav–Weaire and a unified expression that

holds in two and three dimensions.

Finally, readers with an understanding of topology should be informed that

throughout this paper, the phrase ‘cell complex’ refers to a regular CW complex.

2. Two dimensions

Consider a two-dimensional cell complex Ω covering the plane R2. An individual grain is

the basic two-dimensional constituent of this structure, and may correspond to a grain

in a microstructure, a bubble in a foam, or a cell in a biological tissue. Adjacent grains

meet on edges, and adjacent edges meet at vertices. The cell complex Ω is called simple

when exactly three edges and three grains meet at every vertex. An example of a simple

cell complex is given in figure 1.

Within the cell complex Ω, consider R to be an arbitrary finite collection of

contiguous grains. Let e
i
j be the ith j-dimensional cell of R, where a grain is a 2-

dimensional cell, an edge is a 1-dimensional cell, and a vertex is a 0-dimensional cell.

Let fi(R) be the number of i-dimensional cells of R, and fi,j(R) be the number of pairs of

an i-dimensional cell and a j-dimensional cell where the i-dimensional cell is contained

in the boundary of the j-dimensional cell. These quantities should all be regarded as

components of the more general flag f -vector [26].

For the remainder of this section, we place certain constraints on the geometry of

the cell complex Ω. Rather than assuming that the cell complex be composed of straight
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edges, we allow the edges to be curved but require that edges meet at vertices at angles

of 2π/3. This is a natural constraint for cell complexes where the energy per unit area

is directly proportional to the length of the edges in that area, as is the case for grain

boundaries in a two-dimensional microstructure with uniform boundary energies. This

constraint does not significantly limit the types of cell complexes to which our analysis

applies, since deformations in small neighborhoods around the vertices may be used to

bring a cell complex with arbitrary turning angles into this condition.

Lemma 1 (A Combinatorial Curvature). Let Ω be a simple cell complex subdividing the

two-dimensional plane R2, where Ω is subject to the angular condition described above.

Let R be a finite collection of grains of Ω, and let ∂R be the boundary of R. Then the

relation �

�
∂R

e1

κ ds = 2π · f2(R)− π

3
· f0,2(R) (1)

holds, where the quantity on the left is the integral of the curvature along the edges of

∂R.

Notice that the quantity on the right of (1) is directly proportional to the difference

of six and the average number of vertices per grain in the region R. In particular, if R is

a single grain G, the integral of the curvature over the edges of G vanishes when G has

six vertices. On the other hand, consider a region R containing N grains. Intuitively,

as N increases, the integral on the left should become small relative to N , suggesting

that the average number of vertices of a grain is six.

Proof of Lemma 1: Let D be a region in R2 with boundary ∂D that is a piecewise

smooth curve. The Gauss–Bonnet Theorem states that�

�
∂D

e1

κ ds+
�

i

αi = 2π · χ(D) (2)

where the signed curvature κ is integrated over the edges of ∂D, αi is the exterior angle

where the edges of ∂D meet at the ith vertex, and χ(D) is the Euler characteristic of

D. For a single grain G of Ω, this becomes
�

�
∂G

e1

κ ds = 2π − π

3
· f0(G) (3)

where f0(G) is the number of vertices of the grain G, the exterior angle for every vertex

is exactly π/3, and χ(G) is unity. Applying this relation to all of the grains of the

region R and summing gives (1). The integral of the curvature is performed only over

the boundary ∂R of the region R, since the integrals of the curvature along both sides

of an internal edge cancel.

Theorem 2 (The Local Law of Aboav–Weaire). Let G be a grain with n neighboring

grains and R be the region composed of the grain G and all of its neighbors. Let mi be
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the number of edges of the ith neighbor. Assuming that mi ≥ 3 for all i, the average

number of edges per grain of the neighboring grains of G is given by

1

n
·

n�

i=1

mi = 5 +
6

n
− 1

n
· 3
π
·
�

�
∂R

e1

κ ds. (4)

As a rough approximation, one may assume that the magnitude of the integral is

generally small to find that

1

n
·

n�

i=1

mi ≈ 5 +
6

n
. (5)

Proof of Theorem 2: Since each grain has the same number of vertices as edges, we have

the relation

f1,2(R) = f0,2(R). (6)

Furthermore, provided that mi ≥ 3 for all i, or equivalently that G does not border any

two-edged grains, we have the relations

f2(R) = n+ 1, (7)

f1,2(R) = n+
n�

i=1

mi. (8)

With the intention of eventually separating a quantity equal to the right side of (1), we

add (6) to (7) multiplied by 6 to find that

f1,2(R) = 6n+ 6− 3

π
·
�
2π · f2(R)− π

3
· f0,2(R)

�
. (9)

Substituting for f1,2(R) using (8) and rearranging the result gives

1

n
·

n�

i=1

mi = 5 +
6

n
− 1

n
· 3
π
·
�
2π · f2(R)− π

3
· f0,2(R)

�
(10)

which is the combinatorial form of the local Law of Aboav–Weaire. Finally, applying

Lemma 1 gives the desired equality.

One advantage of this result is that (4) is exact for any given region R that satisfies

the assumptions of Theorem 2 and is part of a simple cell complex with the specified

vertex angles. For instance, (4) remains valid when the region R contains holes due to

the arrangement of the grains, as in figure 1. This situation is normally neglected in

derivations of the Law of Aboav–Weaire.
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3. Three dimensions

Most natural cell complexes are three-dimensional. The literature generally assumes

that there is an analogue of the Law of Aboav–Weaire for a three-dimensional cell

complex, and furthermore that this analogue should provide a prediction for the average

number of faces of the neighbors of an n-faced grain [21, 22, 23, 24]. Historically though,

empirical support for this assumption may be found only within simulation results, due

to the practical difficulties of microscopy techniques able to resolve a three-dimensional

microstructure. Moreover, the scarcity of direct experimental evidence and the increased

complexity of the cell complex compared with the two-dimensional analogue has

generally discouraged theoretical treatment of the three-dimensional version of the Law

of Aboav–Weaire.

Consider a three-dimensional cell complex Ω covering three-dimensional space R3.

In this section, a grain is the basic three-dimensional constituent of the cell complex.

Adjacent grains meet on faces, adjacent faces meet on edges, and adjacent edges meet at

vertices. The cell complex Ω is called simple when exactly three faces and three grains

meet at every edge, and four edges, six faces and four grains meet at every vertex. An

example of a simple cell complex is given in figure 2(b).

Within the cell complex Ω, consider R to be an arbitrary finite collection of

contiguous grains. Let e
i
j be the ith j-dimensional cell of R, where a grain is a 3-

dimensional cell, a face is a 2-dimensional cell, an edge is a 1-dimensional cell, and a

vertex is a 0-dimensional cell. Let fi(R) and fi,j(R) be defined as for two dimensions.

Finally, let fi,j,k(R) be the number of triplets of an i-dimensional cell, a j-dimensional

cell and a k-dimensional cell where the i-dimensional cell is contained in the boundary

of the j-dimensional cell, and the j-dimensional cell is contained in the boundary of the

k-dimensional cell.

We place certain constraints on the geometry of the cell complex Ω for the remainder

of this section. Specifically, we require that faces meet at edges at dihedral angles of

2π/3 and that edges meet at vertices at angles of arccos(−1/3). This is a natural

constraint for cell complexes where the energy per unit volume is directly proportional

to the area of the faces contained in that volume, as is the case for a grain boundary

network in a three-dimensional microstructure with uniform boundary energies. As

before, deformations in small neighborhoods around the edges and vertices may be used

to bring an arbitrary cell complex into this condition.

Lemma 3. Let Ω be a simple cell complex subdividing three-dimensional space R3 and

let R be a finite collection of grains of Ω. Then the relation

4 · f3(R) = 2 · f2,3(R)− f0,3(R) (11)

holds.

Proof of Lemma 3: The Euler relation for the boundary ∂G of a single grain G is

2 = f0(G)− f1(G) + f2(G) (12)
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where the Euler characteristic is 2 since the boundary of every grain is a spherical

polyhedron. The property that Ω is simple imposes the condition 3 · f0(G) = f0,1(G) =

2 · f1(G), causing the above expression to take the form

4 = 2 · f2(G)− f0(G). (13)

Applying this relation to all of the grains of the region R and summing gives (11).

Since we intend to roughly follow the same derivation as in Section 2, we require the

equivalent of Lemma 1 for a three-dimensional cell complex. Let D be a polyhedron‡
in R3 with a piecewise smooth boundary ∂D. The supplementary material shows that

the form of the Gauss–Bonnet Theorem suitable for this polyhedron is
�

�
∂D

e2

K dA+

�

�
∂D

e1

(2− 2 cos β)1/2 · κ · e2 · v ds+
�

i

αi = 2π · χ(∂D) (14)

where K is the Gaussian curvature of the faces, κ is the curvature and e2 is the second

Frenet vector of the edges, αi is the angular defect of the ith vertex, and χ(∂D) is the

Euler characteristic of ∂D. For the definition of the remaining quantities, consider the

plane perpendicular to the tangent vector at a point along one of the edges of ∂D. Let β

be the turning angle of the curves of intersection of this plane with the neighboring faces,

and let v be the unit vector in this plane that bisects the dihedral angle, as depicted in

figure 3.

Finally, we define the numerical constants a0 = π − arccos(−1/3) and a1 =

2π − 3 arccos(−1/3), which are the turning angle at a vertex of a face and the

concentrated Gaussian curvature at a vertex of an isolated grain, respectively. With

all of these definitions in hand, we supply the following lemma.

Lemma 4 (A Combinatorial Curvature). Let Ω be a simple cell complex subdividing

R3, where the faces meet at dihedral angles of 2π/3 and the edges meet at angles of

arccos(−1/3). Let R be a finite collection of grains Gi of Ω indexed by i. Then the three

relations

f3(R)�

i=1

� �

�
∂Gi

e2

K dA+

�

�
∂Gi

e1

κ · e2 · v ds
�
=






4π · f3(R)− a1 · f0,3(R)

2π · f2,3(R)− a0 · f0,2,3(R)

12a0 · f3(R)− 2a1 · f2,3(R)

(15)

hold, where the summand is given by the sum of the integral of the Gaussian curvature

over the faces of the ith grain and the integral of the concentrated Gaussian curvature

over the edges of the ith grain, and the summation is performed over all grains in the

region R.

Notice that the first line on the right is directly proportional to the difference of

22.795 and the average number of vertices per grain in R, the second line on the right is

directly proportional to the difference of 5.104 and the average number of vertices per

‡ A regular CW complex that is homeomorphic to the standard 3-ball. The boundary of the polyhedron
is the inverse image of the standard 2-sphere.



A geometric formulation of the Law of Aboav–Weaire 8

face in R, and the third line on the right is directly proportional to the difference of

13.397 and the average number of faces per grain in R. In particular, if R is a single

grain G, the integral of the Gaussian curvature over the faces and edges of G vanishes

when G has 22.795 vertices and 13.397 faces. Since the number of vertices and faces of

G must be integers, the integral of the Gaussian curvature over the faces and edges of

G cannot vanish.

Proof of Lemma 4: For a single grain Gi of R, the Gauss–Bonnet Theorem as expressed

in (14) becomes
�

�
∂Gi

e2

K dA+

�

�
∂Gi

e1

κ · e2 · v ds = 4π − a1 · f0(Gi) (16)

where f0(Gi) is the number of vertices of the grain Gi and χ(∂Gi) is 2 because the

boundary of every grain is a spherical polyhedron. The angular constraints placed on

the cell complex Ω require that the turning angle β always be π/3, and that angular

defect for every vertex always be a1. Applying this relation to all of the grains of the

region R and summing gives the first equality of (15).

We prove the remaining two equalities of (15) by showing the equivalence of the

combinatorial quantities on the right sides. The equivalence of the first and second lines

on the right of (15) is found by using Lemma 3 to substitute for f3(R) in the first line,

giving the relation

4π · f3(R)− a1 · f0,3(R) = 2π · f2,3(R)− (π + a1) · f0,3(R). (17)

Since π + a1 = 3a0 and 3 · f0,3(R) = f0,2,3(R), the second equality of (15) holds. The

equivalence of the first and third lines on the right of (15) is found by using Lemma 3

to substitute for f0,3(R) in the first line, giving the relation

4π · f3(R)− a1 · f0,3(R) = (4π + 4a1) · f3(R)− 2a1 · f2,3(R). (18)

Since 4π + 4a1 = 12a0, the third equality of (15) holds.

Theorem 5. Let G be a grain with n neighboring grains and R be the region composed

of the grain G and all of its neighbors. Let mi be the number of faces of the ith neighbor.

Assuming that no two-edged faces share exactly one edge with G, the average number of

faces per grain of the neighboring grains of G is given by

1

n
·

n�

i=1

mi =

�
2π

a1
+ 1

�
+

1

n
·
�
2π

a1
+ 2

�

− 1

n
· 1

2a1
·
n+1�

j=1

� �

�
∂Gj

e2

K dA+

�

�
∂Gj

e1

κ · e2 · v ds
�

(19)

where Gj is the jth grain of R.
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As a rough numerical approximation, one may assume that the magnitude of the

integral is generally small to find that

1

n
·

n�

i=1

mi ≈ 12.397 +
13.397

n
. (20)

Proof of Theorem 5: Since, by assumption, no two-edged faces share exactly one edge

with G, we have the relations

f3(R) = n+ 1, (21)

f2,3(R) = n+
n�

i=1

mi. (22)

With the intention of eventually separating a quantity equal to the right side of (15),

we divide (11) by two and rearrange the result to find that

f2,3(R) =

�
2π

a1
+ 2

�
· f3(R)− 1

2a1
[4π · f3(R)− a1 · f0,3(R)] . (23)

Substituting for f3(R) and f2,3(R) using (21) and (22) respectively, solving for the

summation and dividing through by n gives

1

n
·

n�

i=1

mi =

�
2π

a1
+ 1

�
+

1

n
·
�
2π

a1
+ 2

�
− 1

n
· 1

2a1
· [4π · f3(R)− a1 · f0,3(R)] (24)

which is one of the combinatorial forms of the analogue to Theorem 2. The other

combinatorial forms may be found by substituting one of the other quantities on the

right side of (15) for the quantity in brackets. Finally, applying Lemma 4 gives the

desired equality.

Notice that (19) is exact for any particular region R that satisfies the assumptions

of Theorem 5 and is part of a simple cell complex with the specified dihedral angles and

vertex angles. In particular, as with the two-dimensional case, (19) remains valid when

the region R contains holes due to the arrangement of the grains.

4. The Global Relations

While the results of Sections 2 and 3 apply to the average number of faces per grain of

the neighbors around a particular grain, the usual form of the Law of Aboav–Weaire

applies to the average number of faces per grain of the neighbors around an average

grain with a specified number of neighbors [2, 3]. We refer to these predictions as the

global relations to distinguish them from the local relations of earlier sections.

Consider a simple two-dimensional cell complex Ω as in Section 2. Let Nn be the

number of grains in Ω with n neighbors, and let Hi be the ith grain with n neighbors.
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Let Si be the region consisting of Hi and all neighboring grains, and let mi,j be the

number of edges of the jth neighbor of Hi. The average of (10) over all Hi is

1

Nn
·

Nn�

i=1

� 1
n
·

n�

j=1

mi,j

�
= 5 +

6

n
− 1

n
· 3
π
· 1

Nn
·

Nn�

i=1

�
2π · f2(Si)−

π

3
· f0,2(Si)

�
. (25)

Let pn be the frequency of grains with n neighbors in Ω, and let � · � =
�

n(pn · )
indicate the average of a quantity over n. We write the average of the quantity in

brackets on the right as

1

Nn
·

Nn�

i=1

�
2π · f2(Si)−

π

3
· f0,2(Si)

�
= 2π · (n+ 1)− π

3
· �n� · (n+ 1) + �n (26)

where �n is referred to as the average excess curvature, and is defined by the above

equation. Notice that by Lemma 1, the quantity on the left is the expectation value of

the sum of the integrals of the curvature over the boundaries of the n+ 1 grains in any

given Si. Meanwhile, by the same lemma, the expression 2π · (n+1)−π/3 · �n� · (n+1)

is the expectation value of the sum of the integrals of the curvature over the boundaries

of n + 1 grains, chosen independently and randomly from the entire population in Ω.

This means that �n is the difference of the expectation values of the integrated curvature

over the boundaries of two populations of grains, one given by a cluster around a central

grain with n neighbors, and the other by the same number of grains chosen randomly

from the cell complex. Substituting (26) into (25) and multiplying through gives

gn = 5 +
6

n
−

�
6 +

6

n
− �n� − �n�

n
+

1

n
· 3
π
· �n

�
(27)

where gn is the average number of edges per grain around an average grain with n

neighbors. The average excess curvature �n is defined to allow us to cancel terms deriving

from the local constrains and replace them with the corresponding global quantities,

leaving

gn = �n� − 1 +
�n�
n

− 1

n
· 3
π
· �n (28)

for the Law of Aboav–Weaire. Since �n� is precisely 6 in two dimensions, this exchange

amounts to a convenient change in notation. Notice that the average excess curvature

not only completely specifies gn, but is the single quantity that depends on the specific

features of the cell complex Ω.

The procedure followed above is nearly the same for the simple three-dimensional

cell complex of Section 3. Begin with (19), where the third line of (15) is substituted

for the quantity in brackets on the right. Let Nn, Hi and Si be defined as for the

two-dimensional case, and let mi,j be the number of faces of the jth neighbor of Hi.

Averaging over all Hi gives

1

Nn
·

Nn�

i=1

� 1
n
·

n�

j=1

mi,j

�
=

�
2π

a1
+ 1

�
+

1

n
·
�
2π

a1
+ 2

�

− 1

n
· 1

2a1
· 1

Nn
·

Nn�

i=1

�
12a0 · f3(Si)− 2a1 · f2,3(Si)

�
. (29)
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The quantity in brackets on the right is equal to the sum of the integrals of the Gaussian

curvature over the faces of the n+ 1 grains in Si. We write the average as

1

Nn
·

Nn�

i=1

�
12a0 · f3(Si)− 2a1 · f2,3(Si)

�
= 12a0 · (n+ 1)− 2a1 · �n� · (n+ 1) + �n (30)

where we abuse notation by using the same symbols to indicate analogous quantities

in two and three dimensions. The average excess curvature �n in three dimensions is

the difference of the expectation values of the integrated Gaussian curvature over the

boundaries of two populations of grains, one given by a cluster around a central grain

with n neighbors, and the other by the same number of grains chosen independently

and randomly from all of Ω. Substituting (30) into (29) allows us to cancel the

quantities expressing local conditions and replace them with the corresponding global

ones, resulting in

gn = �n� − 1 +
�n�
n

− 1

n
· 1

2a1
· �n (31)

for grains in the three-dimensional cell complex. Notice that �n� is not generally 13.397

in three dimensions. Indeed, �n� may vary considerably from one cell complex to

another, though our simulations [27] suggest a value of roughly 13.769 ± 0.016 for the

steady-state condition.

The striking similarity of (28) and (31) strongly encourages that these results be

unified in a single equation

gn = �n� − 1 +
�n�
n

− 1

n
· 1
ζ
· �n (32)

where ζ is an angle depending on the dimension. Since this equation is still exact, the

derivation of the Law of Aboav–Weaire for a cell complex in two or three dimensions is

reduced to the derivation or measurement of the average excess curvature �n. We should

point out that (32) is quite similar to the exact result of Chiu [5], though Chiu did not

give a physical or geometric interpretation to the quantity in his result that is analogous

to our average excess curvature. Indeed, this should be expected, because while his

derivation extends to dimensions higher than three, our derivation is considerably more

geometric.

One constraint on �n may be derived by a counting argument. For a given grain

and an integer n, assign to the grain an integer weight that indicates the number of

neighboring grains with n faces. The quantity Nn · n · gn is the sum of the weighted

numbers of faces of all the grains in the cell complex. Consider the sum of Nn · n · gn
over all n, and let G be an arbitrary grain with m neighboring grains. The m faces of

G must be included in this sum with a multiplicity of m, once for each neighbor of G.

This implies the equality
�

n

Nn · n · gn =
�

n

Nn · n2
. (33)
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Using the proportionality of Nn and pn and the notation for averages introduced earlier

in this section, one finds that

�n · gn� =
�
n
2
�

(34)

which is equivalent to an earlier observation of Weaire [2]. Finally, using (32) to

substitute for gn and simplifying the result gives

−1

ζ
��n� = µ2 (35)

as an equation constraining the average excess curvature, where µ2 is the variance of

the distribution of the number of faces of a grain.

Since the functional form of the average excess curvature is not known, we simply

assume that �n may be expanded as a Taylor series in n− �n�. That is, we assume that

�n =
∞�

k=0

ck · (n− �n�)k (36)

for some coefficients ck and for all observable n. We satisfy the prior constraint on the

average excess curvature by substituting (36) into (35) and exchanging the order of the

summations. On solving for the coefficient c0 and substituting the result into (36), the

general expression for the average excess curvature becomes

�n = −ζ · µ2 +
∞�

k=1

ck ·
�
(n− �n�)k − µk

�
(37)

where µk is the kth central moment of the distribution of the number of sides. Despite

certain questions of convergence, (37) is quite useful for comparisons with prior results

in the literature. Substituting (37) into (32) reveals that

gn = �n� − a+
�n� · a+ µ2

n
− 1

n
· 1
ζ
·

∞�

k=2

ck ·
�
(n− �n�)k − µk

�
(38)

where a = 1 + c1/ζ. At this point, setting ck = 0 for k > 0 gives the form of the Law

of Aboav–Weaire suggested by Weaire [2], while setting ck = 0 for k > 1 gives the one

proposed by Aboav [3]. These correspond to constant and linear approximations of the

average excess curvature, respectively. Now, the Law of Aboav–Weaire is usually applied

to two-dimensional cell complexes with n ranging from 3 to 14, and is usually written

following Aboav [3]. We point out that a linear model is a good approximation of any

smooth function over a small domain, and that the success of the Law of Aboav–Weaire

does not necessarily indicate that the average excess curvature is actually linear in n.

There does appear a third form in the literature corresponding to (38). Boots [4]

found that the Law of Aboav–Weaire could be modified to hold for a Voronoi tessellation

of points sampled from a Poisson distribution by including a term proportional to n
−2.

Le Caër [28] found that the same expression performed well for Voronoi tessellations of

the eigenvalues of complex Gaussian random matrices, and Kumar [13] provided some

justification for the additional term. Since �n is expanded as a Taylor series, this form
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of the Law of Aboav–Weaire may be considered to arise from our results as well for

suitable values of the ck.

Finally, we point out that Taylor’s Theorem does not strictly apply to (38). That

is, setting ck = 0 for k > K will give an error that is of order a constant in n for

any K, even though we provide empirical evidence in the following section that the

approximation improves as K increases.

5. Numerical Results

There remains the question of the number of terms to retain from (37) and (38) for

the resulting approximations to �n and gn to be accurate enough for practical use. We

consider four cases in this section. The first is obtained by setting ck = 0 for k > 1,

corresponds to the form of the Law of Aboav–Weaire given by Aboav [3], and is plotted

in red. The second is given by setting ck = 0 for k > 2 and is plotted in blue, the third

is found by setting ck = 0 for k > 3 and is plotted in green, and the fourth is found by

setting ck = 0 for k > 4 and is plotted in cyan. These final three conditions do not seem

to appear in the literature.

We evaluate the ability of these approximations to follow the trends in the measured

values from four simulated cell complexes. These include two- and three-dimensional

versions of a Voronoi tessellation of points sampled from a Poisson distribution, and

two- and three-dimensional versions of a simulated microstructure evolved via normal

grain-growth to the steady-state regime. Our simulations of normal grain-growth move

a discretized grain boundary in accordance with local versions of the von Neumann–

Mullins relation [29, 30] and the MacPherson–Srolovitz relation [31] in two and three

dimensions, respectively. At the point that the statistical features of the microstructure

no longer measurably change with continued grain coarsening, the cell complex is

regarded as being in the steady-state. Further details of the implementation of this

algorithm are provided by Lazar [32, 27]. The two-dimensional cell complexes contain

slightly more than 106 grains each, and the three-dimensional cell complexes contain

slightly more than 105 grains each. The mean values of �n and gn for a given n appear

as black dots, with error bars indicating 95% confidence intervals on the location of the

mean according to the the Vysochanskij–Petunin inequality.

The usual practice in the literature would be to fit the various approximations for �n
and gn to the mean values directly, though this does not account for the radical variation

in the confidence intervals with the value of n. This paper follows a more statistically

robust procedure, and considers a set of grains that neighbors a particular grain with

n faces as providing a single measurement of �n and gn. We find the coefficients that

minimize the sum of the squared distances from the given approximation to the 106

measured values for the two-dimensional cell complexes and 105 measured values for the

three-dimensional cell complexes. This effectively increases the weight for values of n

with many grains and decreases the weight for values of n with few grains.

For all cases considered, the root-mean-square error strictly decreases as the number
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of terms retained from (37) and (38) is increased. That is, the mathematical difficulties

described in Section 4 do not appear to be cause for particular concern. Since the quality

of fit of gn depends entirely on the quality of fit of �n, we concentrate on the graphs

on the left of figures 4, 5, 6 and 7. The approximation of �n with ck = 0 for k > 1,

appearing in red, is observed to not follow the behavior of the measured values of �n
at the extremal values of n. This deviation is particularly pronounced and systematic

for figures 4 and 6, corresponding to the Voronoi tessellations of points sampled from

a Poisson distribution in two and three dimensions. Setting ck = 0 for k > 2 in the

approximation gives the curves appearing in blue. This substantially reduces the root-

mean-square error in all cases, except for the three-dimensional steady state structure

where the change is negligible. While the root-mean-square error is further reduced for

the green curves with ck = 0 for k > 3 terms and for the cyan curves with ck = 0 for

k > 4 , this improvement is offset by the complexity of introducing additional fitting

parameters. We suggest that setting ck = 0 for k > 2 is the appropriate balance between

accuracy and complexity when applying the Law of Aboav–Weaire to an arbitrary cell

complex. With b = c2/ζ, this gives

gn = �n� · (1 + 2b)− a+
�n� · a− �n�2 · b+ µ2 · (1 + b)

n
− n · b (39)

as our suggestion for a practical expression for gn, provided explicitly for reference.

We point out that the approximations to �n given by the blue and green curves

deviate from the measured values for n > 9 in figure 5. The reason for this is a curious

variation in the measured values of �n for 5 < n < 8 in the two-dimensional steady

state structure. The presence of this variation seems to be a property of the steady

state structure that is independent of dimension, since a similar variation is observed in

figure 7. Specifically, the average excess curvature seems to be increased for values of

n near six in two dimensions and for values of n near ten in three dimensions, that is,

around the average value of n. Given our confidence intervals, this behavior does not

appear to the result of stochasticity. Nevertheless, the reason for this phenomenon is

not known, and we are not aware of any mention of this elsewhere in the literature.

6. Conclusions

We have derived exact local forms of the Law of Aboav–Weaire in two dimensions,

and have performed an analogous derivation in three dimensions. We have further

demonstrated that the corresponding global forms should reduce to a single expression,

identical in two and three dimensions except for the single angular quantity ζ.

Identifying this expression required the definition of a further physical quantity, the

average excess curvature, as defined in Section 4. Furthermore, numerical results

obtained from grain growth simulations suggest a correction to the empirically derived

Law of Aboav–Weaire. This correction extends the usefulness of the Law of Aboav–

Weaire to three-dimensional structures and to other cell complexes generally considered
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to be exceptions to the rule, including Voronoi tessellations of uniformly distributed

points in two and three dimensions.

One point worthy of further study is the elevation of the average excess curvature in

the steady-state structures for values of n near six in two dimensions and for values of n

near ten in three dimensions. As far as we are aware the cause of this phenomenon is not

known, and we hope that the meaning of this systematic deviation from the prevailing

behavior of the average excess curvature will become clear in the future.

Finally, one may consider relaxing the conditions on the cell complex Ω. For

instance, the energetics of certain physical systems allow for the stable formation of

vertices with four incident edges in two dimensions, or triple lines with four incident

faces in three dimensions. This leads to contemplation of a corresponding relation for

subdivisions of R2 or R3 that are not simple. Further afield, there is good reason

to investigate the existence of analogous relations for subdivisions of other manifolds

entirely, perhaps with varying intrinsic curvature, and whether the concept of average

excess curvature extends in a natural way. While no longer physically motivated, one

may ask all of the same questions for cell complexes on manifolds of dimension higher

than three. Although the original empirical observation is already several decades old,

there remains ample opportunity for research in this area.
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[18] C Godrèche, I Kostov, and I Yekutieli. Topological correlations in cellular structures and planar

graph theory. Phys. Rev. Lett., 69(18):2674–2677, Nov 1992.
[19] M A Fortes. Applicability of the Lewis and Aboav-Weaire laws to 2D and 3D cellular structures

based on Pisson partitions. J. Phys. A-Math. Gen., 28(4):1055–1068, February 1995.
[20] M A Fortes. Topological properties of cellular structures based on the staggered packing of prisms.

J. Phys.-Paris, 50(7):725–731, April 1989.
[21] M A Fortes. Applicability of Aboav’s rule to a three-dimensional Voronoi partition. Phil. Mag.

Lett., 68(2):69–71, August 1993.
[22] L Oger, A Gervois, J P Troadec, and N Rivier. Voronoi tessellation of packings of spheres:

Topological correlation and statistics. Philos. Mag. B, 74(2):177–197, August 1996.
[23] F Wakai, N Enomoto, and H Ogawa. Three-dimensional microstructural evolution in ideal grain

growth - General statistics. Acta Mater., 48(6):1297–1311, April 2000.
[24] S Jurine, S Cox, and F Graner. Dry three-dimensional bubbles: growth-rate, scaling state and

correlations. Colloid. Surface. A, 263(1-3):18–26, August 2005.
[25] B N Boots. The arrangement of cells in random networks. Metallography, 15(1):53–62, 1982.
[26] M M Bayer and L J Billera. Generalized Dehn-Sommerville relations for polytopes, spheres and

Eulerian partially ordered sets. Invent. Math., 79(1):143–157, 1985.
[27] E A Lazar, J K Mason, R D MacPherson, and D J Srolovitz. A more accurate three-dimensional

grain growth algorithm. Acta Materialia, 59(17):6837 – 6847, 2011.
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Figure 1. A small region of a simple cell complex covering the plane. Shaded in
light grey is the region R consisting of a grain G in dark grey and all neighboring
grains. While unusual, the region R may contain any number of holes depending on
the arrangement of the grains.

Figure 2. A depiction of (a) the grain G and (b) the region R as defined in Theorem 5.

Figure 3. Definition of the unit vector v and turning angle β necessary to find the
Gaussian curvature concentrated at the curved edges of the boundary of a grain.
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Figure 4. (a) �n and gn as functions of n for the two-dimensional Poisson–Voronoi
structure where µ2 is 1.7823. Simulation results appear as black dots, while red, blue,
green and cyan curves use values of �n given by least-squares fits of (37) with ck = 0
for k greater than one, two, three and four, respectively. Fitting coefficients, given to
the precision of the fitting procedure and ordered by increasing k, are −0.399542 for
the red curves, −0.406900 and 0.0653253 for the blue curves, −0.379467, 0.071121 and
−0.0052241 for the green curves, and −0.377280, 0.069514, −0.0057421 and 0.00017964
for the cyan curves. Error bars indicate 95% confidence intervals on the mean.
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Figure 5. (a) �n and (b) gn as functions of n for the two-dimensional steady state
structure where µ2 is 1.6156. Simulation results appear as black dots, while red, blue,
green and cyan curves use values of �n given by least-squares fits of (37) with ck = 0
for k greater than one, two, three and four, respectively. Fitting coefficients, given
to the precision of the fitting procedure and ordered by increasing k, are 0.142942 for
the red curves, 0.176895 and −0.0616744 for the blue curves, 0.068871, −0.104854 and
0.0257262 for the green curves, and 0.031047, −0.083475, 0.0365093 and −0.00326445
for the cyan curves. Error bars indicate 95% confidence intervals on the mean.
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Figure 6. (a) �n and (b) gn as functions of n for the three-dimensional Poisson–
Voronoi structure where µ2 is 11.197. Simulation results appear as black dots, while
red, blue, green and cyan curves use values of �n given by least-squares fits of (37) with
ck = 0 for k greater than one, two, three and four, respectively. Fitting coefficients,
given to the precision of the fitting procedure and ordered by increasing k, are −1.6152
for the red curves, −1.6014 and 0.046105 for the blue curves, −1.5618, 0.047520 and
−0.0011794 for the green curves, and −1.5580, 0.04481, −0.0013255 and 0.000042989
for the cyan curves. Error bars indicate 95% confidence intervals on the mean.
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Figure 7. (a) �n and (b) gn as functions of n for the three-dimensional steady state
structure where µ2 is 22.125. Simulation results appear as black dots, while red, blue,
green and cyan curves use values of �n given by least-squares fits of (37) with ck = 0 for
k greater than one, two, three and four, respectively. Fitting coefficients, given to the
precision of the fitting procedure and ordered by increasing k, are −1.01467 for the red
curves, −1.02431 and 0.006095 for the blue curves, −1.2008, −0.013849 and 0.00317284
for the green curves, and −1.3436, 0.005082, 0.00626411 and −0.0002500819 for the
cyan curves. Error bars indicate 95% confidence intervals on the mean.


